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Abstract— Routing and operation problems are the most highlight problems which must be explained obviously in unsteady flow in open 
channels. Both routing and operation problems are basic logical interference methods. The routing approach means using Saint- Venant 
equations for expecting the results in the downstream of the channel from the known conditions in the upstream. At the other end of the 
spectrum, the operation technique is the inverse computational method which means using the downstream results to calculate the 
upstream hydrographs or to interpret the reasons of events happened during wave progression. Saint-Venant equations which are based 
on the discretization of the Preissmann scheme can be solved using an inverse explicit scheme. The inverse explicit finite difference 
scheme was applied using three different case studies; once for a trapezoidal section in a single channel, the second for a non-prismatic 
zone of Al-Mansouria canal between Bahr Tnah canal and Snayet regulator and finally it was applied to a trapezoidal section of a channel 
diverted into two branches. The procedure is performed from the downstream section by proceeding backward in time followed by space 
backward. The accuracy of the inverse explicit method was checked by applying the results found by this inverse method as an upstream 
boundary condition in the routing problem. It was found that the method is stable and gave flow hydrographs in the downstream close to 
the required demand. The implicit Verwey's Variant of Preissmann scheme, Lax explicit scheme and MacCormack explicit scheme were 
applied in the routing problem in the first case study. A comparison between the three routing methods is presented. 

Key words: Saint-Venant equations, inverse computational problem, Preissmann scheme, Lax diffusive scheme, routing problems, 
MacCormack scheme, Operation problems, explicit finite difference method. 

——————————      —————————— 

1 INTRODUCTION                                                                     
ATER is one of the most important inputs for the eco-
nomic development. In Egypt, the water problem in the 
21st century is due to lack of water and the problem of 

its management. The problem of water is predicted to increase 
dramatically, especially after the construction of the Al-Nahda 
dam as it will lead to a deficit of 9 billion cubic meters of river 
water, increasing to 16 billion annually with climate change. 
The future looks scare if the government does not succeed in 
implementing water resources controlling approach that can 
match the limited fresh water quantity with the increasing 
demand. As engineers, it’s our role to shed the light on the 
management of water according to the different water re-
quirements every year. The requirements of water differ ac-
cording to the condition of the weather, the type of crop plant-
ed as every type needs a specific amount of water and differ 
also according to supply limitations. It is necessary to meet the 
requirements of water every year without shortage of water or 
losses at the required time [15]. This control of water can be 
easily achieved by placing hydraulic structures along water 
canals and controlling their operation. Unfortunately, the ad-
justment of hydraulic structures causes unsteady flow in the 
canals. The unsteady flow conditions can be defined by a 
group of semi linear hyperbolic partial differential equations. 
Mathematical solution of the equations can't be easily used 
except for some simple cases. Therefore, a lot of numerical 
techniques for the governing equations can be used for the 
solution at an enormous number of the study channel points, 
[6]. 

2 GOVERNING EQUATIONS 
Describing open channel flow means identifying the flow var-

iables using two governing equations; the continuity equation 
and the momentum or energy equation [4]. 
The governing equations are expressed as: 
                                                                              
                                                                                                          (1) 
 
 
 
                                                                                                          (2) 
 
 
Or it can be expressed also in the matrix form as: 
 
                                                                                                          (3) 
 
 
                                                                                                          (4) 
                                                                                                          

3 NUMERICAL SOLUTION METHODS 
 
One of the most common methods of obtaining approximate 
solutions of partial differential equations is the method of fi-
nite difference. The main idea of this technique is to replace 
the derivatives in the equation by approximate formulas in the 
form of differential algebraic equations. Although finite differ-
ence techniques are simple to be programed, there are a num-
ber of difficulties especially that associated with numerical 
instabilities. There are two types of finite difference schemes 
which are named as explicit and implicit finite difference 
schemes. Each of them has its advantages and drawbacks, so 
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using an implicit scheme or explicit scheme depends on the 
problem to be solved [1, 3, 12]. The explicit techniques depend 
mainly on dividing the current domain in x-t plane into small 
rectangular grids of space ∆ x and time ∆ t. The flow variables 
at a rectangular grid point on a progressive time can be calcu-
lated from the known conditions at the present time or present 
and previous time lines [6, 11]. Although explicit finite differ-
ence techniques are relatively simple to be programmed, they 
are fraught with difficulties associated with instability that go 
beyond the satisfaction of the courant condition. At the other 
end of the spectrum, implicit finite difference schemes depend 
on replacing the spatial partial derivatives and the coefficients 
in terms of the values at the unknown time level. It is a com-
putational scheme where the values of the parameters like 
water depth and velocity are determined by solving a system 
of simultaneous equations using algorithmic methods; e.g.  
Double sweep method or Newton Raphson method. This 
means that implicit methods require an extra computation 
time and more complex process than explicit methods, but 
there is an obvious advantage of the implicit methods that 
they are unconditionally stable. 

 

3.1 Lax Diffusive Scheme 
 
The two stage Lax diffusive scheme is second order accurate 
in space and time technique. By using Lax method, the flow 
depth, velocity or any other variables can be calculated easily 
by using the known variables at the previous time stage. 
So any flow variables can be approximated as follows [4]: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Finite difference grids used in explicit methods 
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Substitution of these expressions in Eq. (1) and Eq. (2) yields: 
 
                                                                                                   (10) 
 
 
 
 

                                                                                        (11) 
 
3.2 MacCormack Scheme 
 
The MacCormack scheme is also an explicit method, but it is a 
two-step method in which there is predictor part and corrector 
part [10]. In prediction part, the following approximations are 
used: 
 

                                                                                                   (12) 
 
 

                                                                                                        (13) 
 

 
Substitution of the approximations mentioned in matrix form 
of governing equations leads to: 
The predictor part: 

 
                                                                                                        (14) 
 
Where       gives values of *A and *Q , from which we can get 
values of y and v in which subscript "*" refers to variables 
which are calculated during the predictor part. After that, the-
se calculated values are used in the corrector part to compute 

*F  and *S . 
 

The corrector part: 
 

                                                                                        (15) 
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Substitution of these finite differences and *S S=  into Eq. 3 
leads to : 

 
 
                                                                                                   (17) 
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the corrector part. Then the values of  at the time step J+1 
can be calculated by: 

 
                                                                                                   (18) 
 

The main disadvantage of all explicit schemes generally is the sta-
bility condition known as the courant condition, nc . The courant 
number depends upon the values of time interval t∆  and the 
space interval  x∆ which may require very small values of 

t∆ and x∆ . The grid size will be calculated from the condition 
that the courant number must be less than unity. Courant number 
is the ratio between actual wave velocity and the numerical wave 
velocity so nc   is given by: 
 
                                                                                                        (19) 
 
 

This stability condition may be a complicated process as the 
courant number should be applied at each time step to get the 
updated values of the celerity of the wave and the water veloc-
ity which depend on the value of variable water stage [6]. 

Equations of any of the two explicit methods may be used 
for estimating the flow variables at the interior grid points at 
each time step. Contrarily, those equations can't be applied to 
calculate the boundary parameters because there are no grid 
points outside the flow domain. The characteristics method 
can be applied to get the flow parameters at the boundaries 
where the positive characteristic equation may be solved with 
the downstream boundary condition at the same time, while 
the negative characteristic equation may be solved with the 
upstream boundary condition. The end condition may specify 
time variation of water depth, velocity (or discharge), or a 
function combining both of them [4, 7]. 
 

3.3. Verwey's Variant of Preissmann Implicit Scheme 
 

The main advantage of solving open channel flow prob-
lems using implicit schemes generally is the ability to use 
large time steps without any stability distractions as it may be 
stable for any condition. Preissmann implicit scheme is ap-
plied mostly for solving open channel flow among all implicit 
techniques.  

A scheme of the Preissmann type was modified by Verwey 
[1,5], who used a different approximation for some terms, as 
follows:  

 
                                                                                                   (20) 
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The superscripts j+0.5 means that the function is computed 
between two time levels j∆t and (j+1)∆t.  Substituting these 
approximations into equations (1) and (2) leads to: 
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The computations begin by setting 

 
                                                                    .   .The resulting system 
of linear equations in                     ,  i=1, 2, 3, --------, J is solved 
to give a first approximation to these 1 1,j j

i iQ y+ +  values, and a 
second approximation to the coefficients, 
 
 

                                                                                                   (25) 
 
The second resolution of the linear system leads to the ap-

proximation of the unknowns and so on. In this method, the 
discharge and water depth are computed directly at the same 
grid points and for that, there is no need to interpolate be-
tween points as in Abbott-Lonescu scheme. Also, there is no 
convergence problem as in the Preissmann scheme [5]. 

4 INVERSE EXPLICIT METHOD 
Several models which are developed to solve operation 

type problems were based on the simulation techniques since 
they can describe the complete dynamics of unsteady flow [8]. 
Inverse explicit scheme is based on discretization of 
Preissmann implicit scheme. Water depth and discharge at the 
downstream are two boundary conditions must be known at 
the time of solution in order to simulate using this method [6]. 

A set of equations is solved to get the unknown parameters 
at every time step.  Considering the time level ‘J’ as the final 
condition, as shown in  Fig. 2, and knowing Qi and yi , be-
tween any two time levels at the downstream section, the dis-
charge and water depth at the previous time level ‘J-1’ can be 
computed by proceeding time backward followed by back-
ward in space[11]. In this approach, the discretization of 
Preissmann scheme is written as: 
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                                                                                                   (27) 

 
The solution begins at the top corner from the right side of 

the time-distance plane, Fig 2. Applying the finite difference 
equations gives a system of two equations in which there are 
two unknown parameters which can be calculated by solving 
those two equations. The solution obtained cell by cell, start-
ing from time, followed by space. Introducing inverse explicit 
scheme into equations (1) and (2) yields the following equa-
tions for every two neighboring grid points [12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Inverse explicit scheme computational grids 

                                                                                                                (28) 

                                                                                                                (29) 

Where:  
&i iy Q  = water depth and discharge from time level J            

to (J-1) at grid point I (KNOWNS). 
1 1&i iy Q− − = water depth and discharge at grid point (I-1) 

(UNKNOWNS). 
P1, P2,Q1,Q2, R1,R2, S1,S2, T1,T2 are coefficients which can be 
computed by knowing the values at time level J by applying 
inverse explicit equations to Saint-Venant equations i.e. Eq. (4) 
in Eq. (1) and Eq. (2), the discretized forms are: 
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Fig.3. Computational Grid for inverse explicit scheme. 

Comparing the coefficients, we can get the value of P1, Q1, R1, S1, T1, 
P2, Q2, R2, S2 and T2. Knowing Qi and yi between any two time levels 
at the last section of the channel, one can apply equations (28) and 
(29) for the last two sections i-1 and i in (Fig. 2), and solve Qi-1 and 
yi-1 explicitly: 
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5. DESCRIPTION OF THE FIRST CASE STUDY 
The example presented in Liu, et al. 1992 [8] was used to test the 
results found by inverse explicit finite difference technique. The 
method was applied to unsteady flow in a channel which was in the 
shape of a trapezoidal section with 5.0m bottom width and side 
slopes are 1.5:1. The bottom slope is 0.001, Manning's roughness 
coefficient is 0.025, the channel length is 2.5 km, and there was a 
fixed overflow weir which was considered as a downstream outlet 
condition. At the downstream section, the discharge of the flow in-
creases from a discharge value of 5 m3/sec to 10 m3/sec in one hour, 
there is no change in the discharge value of 10 m3 /sec in the next 
two hours, then the flow discharge decreases to 5.0 m3/sec in the 
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next hour (demand line in Fig. 4.). At the downstream section, 
there was a fixed weir under a free-flow condition which was 
used to get the relationship between the discharge and the 
water depth. As the initial conditions, the water depth and 
discharge at the upstream section, Figs. 4 and 5, were comput-
ed using the specified water depth and discharge at the down-
stream section. The calculated hydrograph at the upstream 
section was then used to simulate the channel flow with the 
routing finite difference schemes. The calculated downstream 
hydrographs reasonably reproduced the demand down-
stream, Figs. 4 and 5.  
In the routing problem, the upstream hydrograph calculated using 
inverse explicit scheme ( 100 , 200sec, 0.5, 1x m t φ θ∆ = ∆ = = = ) is used 
as upstream boundary condition to get the downstream hydrograph 
using different finite difference schemes. Lax diffusive scheme 
and MacCormack scheme are used as explicit schemes and 
Verwey Veriant’s of Preissmann scheme is used as an implicit 
scheme. Comparison between the results found by the three 
methods has been done. Implicit schemes are distinguished 
from explicit schemes as they are unconditionally stable. So, 
while using the Preissmann implicit scheme, there are no con-
straints or conditions in choosing values of space interval and 
time interval. On the other hand while dealing with both ex-
plicit schemes, courant condition must be achieved. This 
courant condition requires small values of space interval and 
time interval in order to be achieved and get acceptable re-
sults. Consequently, in the present case study the same space 
interval and time interval are used in both explicit methods 
( 30 , 6secx m t∆ = ∆ = ) to make a fair comparison between 
them. 
It can be noticed from table (1), figs. 4 and 5 that the three 
methods gave acceptable results with a small percentage of 
error and any of them can be used for solving the routing 
problems. It is also found that the inverse explicit method is 
stable and reproduced downstream flow hydrographs very 
close to the demand outflow.  
 

TABLE 1 
COMPARISON BETWEEN DIFFERENT ROUTING METHODS 

 
 
 
 
 
 

                                                                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.4 Comparison between downstream discharge hydrographs using 
different finite difference schemes. 

 

  

 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 

 

Fig. 5 Comparison between downstream water depth hydrographs using 
different finite difference schemes. 

 

 
Comparison method 

Mean relative error 
% 

Mean absolute 
error 

Q y Q Y 

Lax diffusive 
scheme 

1.88 .48 0.11 0.008 

MacCormack 
scheme 

1.03 .66 0.099 0.015 

Preissmann scheme 1.34 0.40 0.09 0.007 
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6. DESCRIPTION OF SECOND CASE STUDY 
A reach of 18km length from Al-Mansouria canal was used to test 
the results found by inverse explicit finite difference technique as an 
example of non-prismatic section with an irregular shape. The cross 
section spacing is 2.0 km, the channel bed slope is 4.5 cm/ km [11]. 
The value of Manning's roughness coefficient is 0.025. At the down-
stream of the channel, the discharge increases from 50 m3/sec to 55 
m3/sec in a time period of one hour, it remains constant at 55 m3/sec 
for two hours, then decreases to 50.0 m3/sec in one hour. The man-
ning equation was applied to obtain the water depth at the down-
stream end section. The discharge and water depth at the upstream 
intake were computed using the specified discharge and water depth 
at the downstream end section as the initial condition [13].As math-
ematical solution of Saint-Venanat equations requires that the wetted 
perimeter ‘P’, wetted cross sectional area ‘A’, top width ‘T’ must be 
known as a function of the water depth ‘y’. Those functions may be 
calculated easily using the given field data shown in Shammaa 1988 
[11]. At the first time step, both water depth and discharge at all 
points of the channel must be specified. Two boundary conditions are 
needed for the downstream section. This condition can be achieved 
by giving the discharge hydrograph and the corresponding water 
depth hydrograph at the downstream sections. In our case, the initial 
condition is given as 50.0 m3/s for discharge with the corresponding 
water depth [13]. 
The inverse explicit scheme was tested using different space inter-
vals (Δx), different time intervals (Δt), different weighting coeffi-
cients (Ф) andθ . 
The calculated discharge hydrograph using inverse explicit method 
for space intervals (Δx) = 1000m, 2000m, and 3000m with time in-
terval (Δt) =1800sec, weighting coefficients (Ф) =.5 and 1θ =  are 
shown in Fig.6. It is clearly seen from the figure that there was no 
obvious change between the upstream produced by using different 
space intervals and all of them gave downstream hydrograph very 
close to the demand. The accuracy of each space interval (Δx) = 
(1000m, 2000m, 3000m) is (98.14%, 98.15%, 98.17%) respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 The computed discharge hydrographs using different distance inter-
vals in inverse explicit method. 

The computed discharge hydrograph using inverse explicit method 
for time steps (Δt) = 1000sec, 1800sec, and 3000sec with space in-
terval (Δx) =1000m, weighting coefficients (Ф) =.5 and 1θ =  are 
shown in Fig.7. It is clearly seen from the figure that small time in-
tervals may show fluctuation in the upstream section. This may lead 
to using a larger time intervals to show stable downstream results 
with an acceptable percentage of error. The accuracy of each time 
interval ( 1800,3000sect∆ = ) is (98.14%, 97.66%) respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Fig. 7 The computed discharge hydrograph using different time intervals. 

 
The computed discharge hydrograph using inverse explicit method 
for weighting coefficient (Ф) = .5, .7 and .99 with space interval (Δx) 
= 1000m, time interval (Δt) =1800sec and weighting coefficient 

1θ =  are shown in fig 8. It is clearly seen from the figure that the 
weighting coefficients (Ф) has a small effect on the computed up-
stream hydrographs and reproduces approximately the same down-
stream hydrographs. The accuracy of each weighting coefficient 
(φ =.5, .7, 1) are (98.15%, 97.62%, 97.72%) respectively. 
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 Fig. 8 The computed discharge hydrograph using different weighting coef-
ficient (Ф). 

The computed discharge hydrograph using inverse explicit method 
for weighting coefficient(θ ) = .8, .9 and 1 with space interval (Δx) 
=1000m, time interval (Δt) =1800 sec and weighting coefficient 

1φ =  are shown in to Fig. 9. It is clearly seen from the figure that 
the oscillation is damped when weighting coefficient (θ ) is larger 
than .8 with accurate results and small oscillation. The accuracy of 
each weighting coefficient (θ =1,0.9,0.8) are (98.15%,98.38%, 
98.65) respectively. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9. The computed discharge hydrograph using different weighting coef-
ficient ( θ ). 
 
 
 

7. DESCRIPTION OF THIRD CASE STUDY 
A channel diverted into two branches was used to test the results 
found by inverse explicit finite difference technique (Fig.10.). The 
main canal and both branches have a trapezoidal section with a bot-
tom width 5.0m and side slopes are 1.5:1. The bottom slope is 0.001, 
Manning's coefficient is 0.025, the channel length is 2.5 km, and 
there was a fixed overflow weir at the end of every branch with free 
flow condition. At downstream outlet for the two branches, the dis-
charge increases from 2.5 m3/sec to 5 m3/sec in one hour, it remains 
constant at 5 m3 /sec for the next two hours, then decreases to 2.5 
m3/sec in one hour (demand line in Fig.11.). The relationship be-
tween discharge and water depth was used to calculate the water 
depth at the end section. The discharges at the upstream of the two 
branches, which are shown in Fig.11, were computed using the spec-
ified discharge and water depth at the downstream end section as the 
initial conditions. The continuity equation was used at the connecting 
point to be used as a downstream boundary condition to get the dis-
charge at the upstream section of the main canal. Then the process 
goes in its forward direction again to verify the results obtained. Ob-
tained upstream discharge hydrograph was used as the upstream 
boundary condition, to simulate the flow in the channel with the 
routing implicit finite difference scheme. Then the downstream 
gained in the main canal is used to get the upstream boundary condi-
tion in both branches. The computed downstream hydrographs rea-
sonably reproduced the prescribed demand at each branch, Figs. 12.  
 

 
 
                                                        
 
 
 
 
 
 
 
 
 
 
 

Fig.10. Canal diverted into two branches. 
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Fig. 11. The computed discharge hydrograph using inverse explicit method for the two typical branches. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  
 Fig. 12. The computed discharge hydrograph using routing implicit method for the two typical branches. 
 
Finally the inverse explicit scheme was tested using the same case study but with changing the length of one branch to be 5.0 km 
instead of 2.5 km as shown in figures 13, 14. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 13.  The calculated hydrograph of discharge using inverse explicit method for different lengths of branch canals. 
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  Fig.14.The computed discharge hydrographs using routing implicit method for different lengths of branch canals. 
 
It can be noticed from the two case studies that the computed down-
stream hydrographs reasonably reproduced the prescribed demand at 
each channel with a reasonable error (the first case study with mean 
relative error =3.55 % at each branch as they are equal and the se-
cond case study with mean relative error= 7.01%, 6.92% at the two 
branches). As it is shown from the percentage of error that all of 
them may be acceptable, but any change between the two branches 
reproduces more error in the results. 

8. CONCLUSION  
Unsteady flow problems in open channels can be classified as rout-
ing and operation type problems, according to the objectives of the 
study. Both of routing problems and operation type problems were 
discussed. Lax diffusive explicit scheme, MacCormack explicit 
scheme and Verwey Verian’t of Preissmann implicit scheme were 
used for solving the routing problems. Inverse explicit method which 
is based on Preissmann scheme was used for solving the operation 
type problems. 
Firstly, a comparison between the three routing methods has been 
done. It was found that the three methods gave acceptable results 
with a small percentage of error and any of them can be used for 
solving the routing problems. It was found also that the inverse ex-
plicit method is stable and reproduced downstream flow hydrographs 
very close to the predefined outflow. 
The inverse explicit scheme was tested using the following parame-
ters: the space interval x∆ , the time interval t∆  , the weighting 
coefficient φ and the weighting coefficient θ  for a non-prismatic 
area of Al-Mansouria canal between Snayet regulator and Bhr Tanah 
canal. 
Firstly, while comparing between different space intervals, there was 
no obvious change between the downstream produced by all of them 
and all of them are very close to the demand downstream. 
 
Secondly, while using different time intervals, it was found that 
small time intervals may show fluctuation at the upstream boundary 
section. This may lead to using a larger time intervals to show 
stable downstream results with an acceptable percentage of 
error.   

 
Thirdly, concerning the effect of using different weighting coeffi-
cientφ from (0.5 to 1.0), it was found that although using smaller 
values of φ  gave the least percentage of error, it showed more 
fluctuation in the calculated upstream hydrograph. Contrarily, 
using larger values of φ showed less fluctuation in the 
upstram and more error in the calculated downstream. 
Finally, while using different weighting coefficientθ , it was con-
cluded that the fluctuation of the calculated upstream hydrographs 
were damped when θ increased  from 0.8 to 1.0. All used values of  
θ  gave very close results to the predefined hydrograph. 
The performance of the inverse explicit finite difference scheme was 
tested using unsteady flow in a channel diverted into two branches. 
The same case study was solved two times; first with the same speci-
fications for the two branches, then with difference in length of the 
two branches. It was found that at each branch of the channel, the 
computed downstream hydrographs reasonably reproduced the de-
mand hydrograph with a reasonable error (the first case with mean 
error =3.55 % at each branch as they are equal, the second case study 
with mean error= 7.01%, 6.92% at the two branches). As it shown 
from the percentages that all of them may be acceptable, but any 
change between the two branches may reproduce more errors. 
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NOTATIONS 
A = wetted cross-sectional area 
g = gravitational acceleration 
VA =Q= discharge (through A) 
 y = depth of flow 
 t = time 
x = space 
S0 =bottom slope of the channel 
Sf =friction slope 

/Ay =moment of flow area about the free surface. 
T = wetted top width 
f = general function which may be depth of flow, velocity of flow or 
discharge of flow 
i = cross-section index 
j = time-level index 
n=Manning’s coefficient 
Δt = time interval 
Δx = space interval 
φ = a weighting coefficient for distributing terms in space 
θ = a weighting coefficient for distributing terms in time. 
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